Exceptional surgeries on alternating knots

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All Exceptional Surgeries on Alternating Knots Are Integral Surgeries

We show that all exceptional surgeries on hyperbolic alternating knots in the 3-sphere are integral surgeries.

متن کامل

The Classification of Exceptional Dehn Surgeries on 2-bridge Knots

A nontrivial Dehn surgery on a hyperbolic knot K in S is exceptional if the resulting manifold is either reducible, or toroidal, or a Seifert fibered manifold whose orbifold is a sphere with at most three exceptional fibers, called a small Seifert fibered space. Thus an exceptional Dehn surgery is non-hyperbolic, and using a version of Thurston’s orbifold theorem proved by Boileau and Porti [BP...

متن کامل

Exceptional Surgery on Knots

Let M be an irreducible, compact, connected, orientable 3-manifold whose boundary is a torus. We show that if M is hyperbolic, then it admits at most six finite/cyclic fillings of maximal distance 5. Further, the distance of a finite/cyclic filling to a cyclic filling is at most 2. If M has a nonboundary-parallel, incompressible torus and is not a generalized 1-iterated torus knot complement, t...

متن کامل

Cosmetic surgeries on genus one knots

Let Y be a closed oriented three-manifold and K be a framed knot in Y . For a rational number r , let Yr(K) be the resulting manifold obtained by Dehn surgery along K with slope r with respect to the given framing. For a knot K in S3 , we will always use the Seifert framing. Two surgeries along K with distinct slopes r and s are called cosmetic if Yr(K) and Ys(K) are homeomorphic. The two surge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Analysis and Geometry

سال: 2016

ISSN: 1019-8385,1944-9992

DOI: 10.4310/cag.2016.v24.n2.a5